80 research outputs found

    Fast scalable visualization techniques for interactive billion-particle walkthrough

    Get PDF
    This research develops a comprehensive framework for interactive walkthrough involving one billion particles in an immersive virtual environment to enable interrogative visualization of large atomistic simulation data. As a mixture of scientific and engineering approaches, the framework is based on four key techniques: adaptive data compression based on space-filling curves, octree-based visibility and occlusion culling, predictive caching based on machine learning, and scalable data reduction based on parallel and distributed processing. In terms of parallel rendering, this system combines functional parallelism, data parallelism, and temporal parallelism to improve interactivity. The visualization framework will be applicable not only to material simulation, but also to computational biology, applied mathematics, mechanical engineering, and nanotechnology, etc

    A Massively Parallel 2D Rectangle Placement Method

    Get PDF
    Layout design is a frequently occurring process that oftencombines human and computer reasoning. Because of the combinatorialnature of the problem, solving even a small size input involves searchinga prohibitively large state space. An algorithm PEMS (Pseudo-exhaustiveEdge Minimizing Search) is proposed for approximating a 2D rectanglepacking variant of the problem. The proposed method is inspiredby MERA (Minimum Enclosing of Rectangle Area) [1] and MEGA(Minimum Enclosing Under Gravitational Attraction) [2], yet produceshigher quality solutions, in terms of final space utilization. To addressthe performance cost, a CUDA based acceleration algorithm is developedwith significant speedup

    Increased Expression of INHBA Is Correlated With Poor Prognosis and High Immune Infiltrating Level in Breast Cancer

    Get PDF
    Background: Inhibin, beta A (INHBA) is a member of the transforming growth factor-β superfamily and is associated with carcinogenesis and cancer progression in several types of human cancers. However, its significance in breast cancer has not been evaluated. Here, we investigated the prognostic value of INHBA and its correlation with tumor-infiltration immune cells in the microenvironment of breast cancer.Methods: In this study, we analyzed the INHBA expression profile in the Oncomine database and Tumor Immune Estimation Resource 2.0 (TIMER2.0) site. Using Breast Cancer Gene-Expression Miner (bc-GenExMiner v4.7) tool and the UALCAN cancer database, we further evaluated the correlation of INHBA expression with clinicopathological factors in breast cancer. Then, we assessed the clinical prognostic value of INHBA using Kaplan–Meier Plotter and the PrognoScan databases. The correlations between INHBA and tumor-infiltrating immune cells were investigated via TIMER2.0. In addition, correlations between INHBA expression and gene markers of immune infiltrates were analyzed by TIMER2.0 and Gene Expression Profiling Interactive Analysis 2.Results: Compared with the level in normal tissues, the INHBA mRNA expression was upregulated in different subtypes of breast cancer, and its expression was positively correlated with progesterone receptor, human epidermal growth factor receptor-2 status, and PAM50 subtypes but negatively related to age and basal-like status. The INHBA protein was also highly expressed in primary breast cancer and closely related to the pathological stage. Patients with high INHBA expression levels showed worse overall survival, relapse-free survival, and distant metastasis-free survival. Also, high INHBA expression was significantly associated with worse overall survival and relapse-free survival in positive lymph nodes. Of interest, INHBA expression was negatively correlated with infiltrating levels of activated NK cells, NKT, and CD4+ T cells but was positively correlated with tumor infiltration of CD8+ T cells, neutrophils, especially macrophages and cancer-associated fibroblasts. Moreover, INHBA expression showed strong correlations with various markers of monocytes/macrophages and cancer-associated fibroblasts.Conclusion: High INHBA expression is correlated with poor prognosis and the infiltration of immune cells in the tumor microenvironment. These findings suggest that INHBA may be involved in immune escape and can serve as a potential biomarker of prognosis and tumor-infiltrating immune cells

    Is field-measured tree height as reliable as believed A comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest

    Get PDF
    Quantitative comparisons of tree height observations from different sources are scarce due to the difficulties in effective sampling. In this study, the reliability and robustness of tree height observations obtained via a conventional field inventory, airborne laser scanning (ALS) and terrestrial laser scanning (TLS) were investigated. A carefully designed non-destructive experiment was conducted that included 1174 individual trees in 18 sample plots (32 m x 32 m) in a Scandinavian boreal forest. The point density of the ALS data was approximately 450 points/m(2). The TLS data were acquired with multi-scans from the center and the four quadrant directions of the sample plots. Both the ALS and TLS data represented the cutting edge point cloud products. Tree heights were manually measured from the ALS and TLS point clouds with the aid of existing tree maps. Therefore, the evaluation results revealed the capacities of the applied laser scanning (LS) data while excluding the influence of data processing approach such as the individual tree detection. The reliability and robustness of different tree height sources were evaluated through a cross-comparison of the ALS-, TLS-, and field- based tree heights. Compared to ALS and TLS, field measurements were more sensitive to stand complexity, crown classes, and species. Overall, field measurements tend to overestimate height of tall trees, especially tall trees in codominant crown class. In dense stands, high uncertainties also exist in the field measured heights for small trees in intermediate and suppressed crown class. The ALS-based tree height estimates were robust across all stand conditions. The taller the tree, the more reliable was the ALS-based tree height. The highest uncertainty in ALS-based tree heights came from trees in intermediate crown class, due to the difficulty of identifying treetops. When using TLS, reliable tree heights can be expected for trees lower than 15-20 m in height, depending on the complexity of forest stands. The advantage of LS systems was the robustness of the geometric accuracy of the data. The greatest challenges of the LS techniques in measuring individual tree heights lie in the occlusion effects, which lead to omissions of trees in intermediate and suppressed crown classes in ALS data and incomplete crowns of tall trees in TLS data.Peer reviewe

    Global research trends and hotspots for leukocyte cell-derived chemotaxin-2 from the past to 2023: a combined bibliometric review

    Get PDF
    Leukocyte cell-derived chemotaxin-2 (LECT2) is an important cytokine synthesized by liver. Significant research interest is stimulated by its crucial involvement in inflammatory response, immune regulation, disease occurrence and development. However, bibliometric study on LECT2 is lacking. In order to comprehend the function and operation of LECT2 in human illnesses, we examined pertinent studies on LECT2 investigation in the Web of Science database, followed by utilizing CiteSpace, VOSview, and Scimago Graphica for assessing the yearly quantity of papers, countries/regions involved, establishments, authors, publications, citations, and key terms. Then we summarized the current research hotspots in this field. Our study found that the literature related to LECT2 has a fluctuating upward trend. “Angiogenesis”, “ALECT2”, “diagnosis”, and “biliary atresia” are the current investigative frontiers. Our findings indicated that liver diseases (e.g. liver fibrosis and hepatic cell carcinoma), systemic inflammatory disease, and amyloidosis are the current research focus of LECT2. The current LECT2 research outcomes are not exceptional. We hope to promote the scientific research of LECT2 and exploit its potential for clinical diagnosis and treatment of related diseases through a comprehensive bibliometric review

    Effect of carbon-coated Al2O3 powder on structure and properties of low-carbon MgO-C refractory composites

    Get PDF
    In this study, low-carbon MgO-C refractory composites with addition of uncoated (UA) and carbon-coated Al2O3 (CCA) powders were prepared. The effect of heat-treatment temperature on apparent porosity, cold modulus of rupture and thermal expansion was investigated. The results indicated that the CCA was present in the form of porous agglomerates of 400–800 µm in diameter in MgO-C matrix. The formation of spinel started at 1100 °C and 1250 °C in UA-MgO-C and CCA-MgO-C specimens, respectively. In the specimen CCA-MgOC, cyclic spinel was formed on the outer layer of CCA agglomerates, and the dense spinel layer hindered the diffusion of Mg(g) to the interior of the agglomerates, resulting in alumina residues at 1550 °C. The specimen CCA-MgO-C showed better mechanical properties and reduced porosity. Additionally, the average coefficient of thermal expansion of CCA-MgO-C was significantly lower than that of UA-MgO-C. Thus, CCA powder could improve the volume stability of the low-carbon MgO-C refractory composites

    International Benchmarking of the Individual Tree Detection Methods for Modeling 3-D Canopy Structure for Silviculture and Forest Ecology Using Airborne Laser Scanning

    Get PDF
    Canopy structure plays an essential role in biophysical activities in forest environments. However, quantitative descriptions of a 3-D canopy structure are extremely difficult because of the complexity and heterogeneity of forest systems. Airborne laser scanning (ALS) provides an opportunity to automatically measure a 3-D canopy structure in large areas. Compared with other point cloud technologies such as the image-based Structure from Motion, the power of ALS lies in its ability to penetrate canopies and depict subordinate trees. However, such capabilities have been poorly explored so far. In this paper, the potential of ALS-based approaches in depicting a 3-D canopy structure is explored in detail through an international benchmarking of five recently developed ALS-based individual tree detection (ITD) methods. For the first time, the results of the ITD methods are evaluated for each of four crown classes, i.e., dominant, codominant, intermediate, and suppressed trees, which provides insight toward understanding the current status of depicting a 3-D canopy structure using ITD methods, particularly with respect to their performances, potential, and challenges. This benchmarking study revealed that the canopy structure plays a considerable role in the detection accuracy of ITD methods, and its influence is even greater than that of the tree species as well as the species composition in a stand. The study also reveals the importance of utilizing the point cloud data for the detection of intermediate and suppressed trees. Different from what has been reported in previous studies, point density was found to be a highly influential factor in the performance of the methods that use point cloud data. Greater efforts should be invested in the point-based or hybrid ITD approaches to model the 3-D canopy structure and to further explore the potential of high-density and multiwavelengths ALS data
    • …
    corecore